

pf. Universitat
Pompeu Fal

Considering Risk Issues in the Uncapacitated Facility Location Problem with Stochastic Components

Helena Ramalhinho

helena.ramalhinho@upf.edu http://lena.upf.edu

Adela Pagès

apagesb@uoc.edu

Angel A. Juan

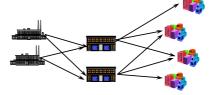
ajuanp@uoc.edu https://ajuanp.wordpress.com/

1

Of. Pompeu Fa

Outline of the Presentation

- ► Introduction
 - Supply Chain Design
- ► The Uncapacitated Facility Location Problem (UCFLP)
- ▶ UCFLP with stochastic components
- Computational results
- ▶ Conclusions
- ▶ Directions of future work.



Universitat
Pompeu Fabr

Introduction

► Design of logistics network

- ¿Where to locate?
 - * Factories
 - * Warehouses
 - * Sale points/stores
- With the objective to ...
 - * Maximize sales
 - * Minimize costs
 - * Maximize service quality

3

Pompeu Fabr Barcelona

Introduction

- ► Design of logistics network
 - Risk of location warehouses
 - * Variable costs
 - * Variable demands
 - * Variable time (traffic)
 - Consider risk during decision making
 - * More realistic
 - * Better decision

f. Universital Pompeu Fa

Mathematical Model of the UFLP

- ► The Uncapacitated Facility Location Problem (UCFLP)
 - Data
 - * F = set of potential facilities
 - * \mathbb{C} = set of customers
 - * f_i = fixed cost for opening a facility
 - * C_{ij} = unit cost of supplying customer i from facility j.

5

f. Pompeu F
Barcelone

Mathematical Model of the UFLP

- ► The Uncapacitated Facility Location Problem (UCFLP)
 - Variables
 - * X_{ij} = fracion of demand of customer i served by facility j.
 - * y_j = binary variables that indicate if facility j is open (1) or close (0).

Mathematical Model of the UFLP

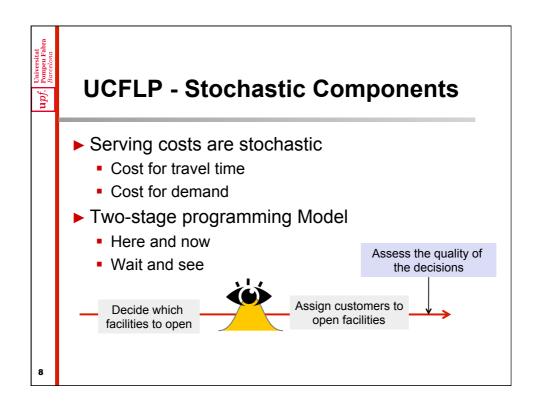
- ► The Uncapacitated Facility Location Problem (UCFLP)
 - Model

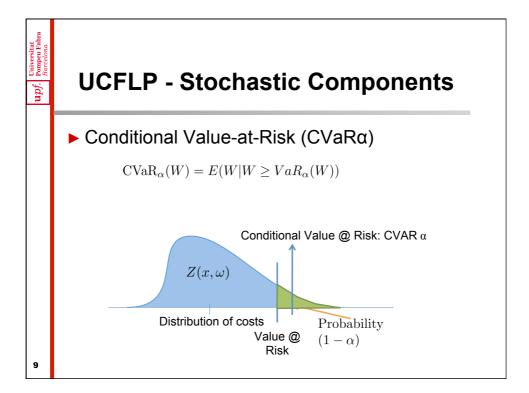
$$\min_{x,y} Z_{det} = \sum_{i \in \mathbb{F}} f_i y_i + \sum_{i \in \mathbb{F}} \sum_{j \in \mathbb{C}} c_{ij} x_{ij}$$
s.t.
$$\sum_{i \in \mathbb{F}} x_{ij} = 1$$
, $\forall j \in \mathbb{C}$ (1b)

s.t.
$$\sum_{i \in \mathbb{F}} x_{ij} = 1$$
 , $\forall j \in \mathbb{C}$ (1b)

$$x_{ij} \le y_i$$
 , $\forall i \in \mathbb{F}, j \in \mathbb{C}$ (1c)

$$0 \le x_{ij} \le 1, \ y_i \in \{0, 1\} \quad , i \in \mathbb{F}, j \in \mathbb{C}; \tag{1d}$$





of. Universitat
Pompeu Fa
Barcelona

UCFLP - Stochastic Components

- ▶ Mean-risk model
 - A mean-risk objective allows to express the decision maker attitude towards risk by fixing a parameter λ to weight the overall expected cost versus risk measure.
- \blacktriangleright Finite set of scenarios $k \in S$
 - π^k = probability of scenario k
 - v^k is the amount by which each scenario exceeds the value-at-risk.
 - η is the value-at-risk.

UCFLP - Stochastic Components

$$\min_{y,x,v,\eta} Z_{stoch} = (1 - \lambda) \left\{ \sum_{i \in \mathbb{F}} f_i y_i + \sum_{k \in \mathbb{S}} \pi^k \sum_{i \in \mathbb{F}} \sum_{j \in \mathbb{C}} c_{ij}^k x_{ij}^k \right\} +$$
(1a)

$$\lambda \left\{ \eta + \frac{1}{1 - \alpha} \sum_{k \in \mathbb{S}} \pi^k v^k \right\}$$

$$\lambda \left\{ \eta + \frac{1}{1 - \alpha} \sum_{k \in \mathbb{S}} \pi^k v^k \right\}$$
 s.t.
$$\sum_{i \in \mathbb{F}} x_{ij}^k = 1$$

$$, j \in \mathbb{C}, k \in \mathbb{S}$$
 (1b)

$$x_{ij}^k \le y_i$$
 , $i \in \mathbb{F}, j \in \mathbb{C}, k \in \mathbb{S}$ (1c)

$$x_{ij}^{k} \leq y_{i} \qquad , i \in \mathbb{F}, j \in \mathbb{C}, k \in \mathbb{S}$$

$$v^{k} \geq \sum_{i \in \mathbb{F}} \sum_{j \in \mathbb{C}} c_{ij}^{k} x_{ij}^{k} - \eta \qquad , k \in \mathbb{S}$$

$$(1c)$$

$$(1d)$$

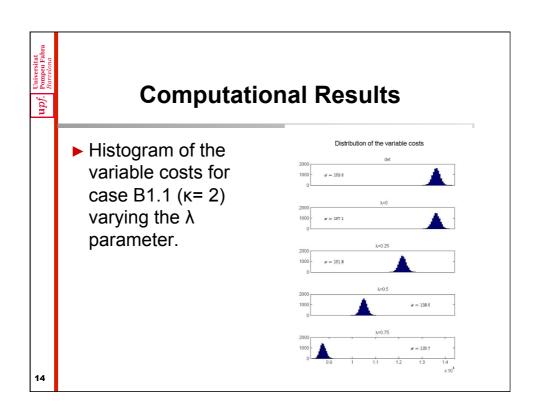
$$x_{ij}^k \ge 0, \ y_i \in \{0, 1\}$$
 $i \in \mathbb{F}, j \in \mathbb{C}, k \in \mathbb{S}$ (1e)

$$\eta \in \mathbb{R}, v^k \ge 0$$
, $k \in \mathbb{S}$, (1f)

Computational Results

- ▶ Assume costs have a lognormal distribution
- ▶ Each element c_{ii}^k is sampled from lognormal X
 - $E(X) = c_{ij}$
 - $V(X) = \kappa E(X)$
- ► Scenarios generated by Monte Carlo Simulation
- ▶ Tests cases implement in Java using CPLEX 12.1 to solve the model.

Computational Results ▶ Results from solving the case B1.1 of the Bilder-Krarup benchmark for different values of λ and κ = 2: Fixed Variable Total Num. Open **Facilities** costs costs cost 23468,0 9779 13689 23468,0 5 23400,3 200 0,95 0 9779 13621 23400,3 5 21003,2 200 0,95 0,25 11645 12183 23828,4 6 17952,8 200 0,95 0,5 | 14606 10502 25108,2 7 13669,7 200 0,95 0,75 18861 8738 27599,5 9 13



Of. Pompeu Fabr

Conclusions

- ► A variant of the UFLP considering stochastic costs and risk is presented.
- ► The solutions found could not be obtained by the deterministic version.
- ► Evaluates the impact of the risk on the decision making.
- ▶ Help the decision making.

15

Of. Pompeu Fa

Future Research

- ▶ Run for a large number of instances
- ► Evaluate the results obtained
- ► Simheuristics to solve this problem for large scale instances.
- Stochastic Capacitated Facility Location Problem